
    
  
 

 

E. The Rank-Ordered Probit Model 
Following the random utility model framework, individuals are assumed to derive utility from 
(1) each of the coral reef protection programs presented in the survey and (2) all else. Both of 
these aspects of utility are assumed to have observable components and unobservable, random 
components. Utility can therefore be expressed as: 

ijijij VU ε+=  (E.1) 

or, more specifically: 
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where i represents the individual survey respondents (i = 1…n); j represents the four program 
options in the survey (1 = status quo, 2 = the No-Fishing Zones Program, 3 = the Reef Repair 
Program, and 4 = the combination of programs 2 and 3); Xi is a k × 1 vector of individual-
specific variables, including a 1 to allow for alternative-specific constant terms; yi is individual 
i’s income; Fj and Sj are scalar indicator variables for whether or not the No-Fishing Zones and 
Reef Repair programs appear in alternative j; βy is the marginal utility of money income; and βF, 
βS, and βFS are each 1 × k vectors of the marginal contributions toward utility that individuals 
with the associated covariates derive from the specific programs. 

Letting Cij be the additional cost to individual i’s household of program alternative j (C = 0 for 
Program 1, the status quo),1 and using Equation E.2, individual i’s utility for the four programs 
are: 

11iU iiy y eb +=  
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1. The experimental design defined 16 cost scenarios that were offered randomly to different survey 
respondents. Importantly, a zero-cost program – the status quo – is included in all choice sets. This allows for 
the estimation of total WTP for the programs. See Appendix B for the full experimental design. 
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The No-Fishing Zones Program at 25% (as opposed to the status quo of 1%), the Reef Repair 
Program at 10 years of recovery time (as opposed to the status quo of 50 years), and the 
combination of the two programs are the only programs included in the choice sets. The policy 
variables, Fj and Sj, are therefore assumed to be binary, “dummy” variables – that is, they can 
take only the value of zero (for the status quo) or 1 (for the proposed program). This modeling 
constraint is imposed to conform to the science, which found alternative levels of the policy 
variables to be unrealistic. 

Because of the limited array of policy programs offered, several constraints or limitations had to 
be imposed on our analysis. First, it had to be acknowledged that the estimated coefficients – the 
estimated β’s – only measure the total contributions that these specific policy changes would 
have on utility and therefore WTP. In other words, the model cannot be used to estimate the 
marginal contributions of alternative levels of the policy variables.  

Second, inclusion of the interaction term βFS in the utility function for the combination (“both”) 
program gives us a model that is observationally equivalent to one where the utility for each of 
the program alternatives is represented by a separate program “dummy.” In other words, 
inclusion of the interaction term gives the “both” alternative complete flexibility to be fitted to 
the data irrespective of the contributions that the separate programs, Fj and Sj, might make to that 
choice. This essentially boils the “both” alternative down to one that does not explicitly 
acknowledge the programs it is composed of. Basically, we lose potential information on how 
respondents valued the individual programs within the “both” alternative. This turned out to be 
an important issue when we conducted a preliminary analysis and found that the bid values on 
the individual programs did not do an adequate job of capturing the program values. The “both” 
program offered a wider range of bids for the two programs, and we found it to be important to 
the analysis to use this information explicitly. We therefore omitted the interaction term in our 
final analysis.2 

Returning to Equation E.3, the e’s are the random components of utility and are assumed to be 
correlated and heteroskedastic across program alternatives. In other words, it is assumed that 
respondents will have unexplained aspects of their preferences for the programs that are likely to 
move in the same direction – either positive for all programs or negative.3 Heteroskedasticity 
                                                 
2. This omission means that we use information gleaned from both the separate program alternatives and the 
“both” alternative to estimate total WTP for the two, separate programs. Analytically, we are combining the 
information we have about how people value the programs separately and how they value them jointly. Our 
estimates of WTP for each of the separate programs will therefore be underestimates of true WTP for those 
individual programs. 
3. One interpretation of this assumed correlation is that different individuals’ error terms might contain fixed 
error components that represent their support or non-support for “any program.” This fixed component would 
feed into the correlation across alternatives. The remaining component of individuals’ errors would be specific 
to the programs offered in each alternative and independent both across and within individuals.  
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allows for the error variances to vary across alternatives. This allows for the possibility, for 
example, that the variance of alternative four might be different – probably larger – than the 
other alternatives.4 

To estimate model parameters via the maximum likelihood method, the log-likelihood function 
is specified as the log of the probability that the specific rankings observed in the data would, in 
fact, occur: 

å å= = =
n
i j ijij IlogPloglik 1
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1  (E.4) 

where Pij is the probability that individual i will select program j and Iij is an indicator function 
for whether or not individual i actually chose program j. The probability, for example, that 
individual i will select program k in the first round of the ranking exercise can be expressed as:  

( ) ( )k j  all for ,U  UP  P  k program chooses i individualProb ijikik ¹>==  
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Equation E.5 is in the form of a cumulative density function (CDF) with random terms – the 
error differences – on the left-hand side of the inequality and a parametric function – differences 
in observable utilities – on the right-hand side. 

Moving to the full sequence of choices, the probability of observing a full ranking of alternatives 
k, l, m, and n for individual i is: 
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4. One way of interpreting heteroskedasticity is by discussion of the scale term. “Scale” is the inverse of the 
standard deviation, so higher variance for an alternative implies a narrower scale. Swait (2007) discusses the 
difficulty of interpreting the thinking behind individuals having varying scales across alternatives, but he notes 
that, analytically, the approach has merits. In our case, it might be that a potentially larger variance could be 
caused by omission of the interaction term discussed above. Essentially, we are reducing the ability of our 
model to explain the “both” choice by excluding this term. The larger, unexplained variation goes into the error 
term, increasing estimated variance. We thank a peer reviewer for making this observation. 
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which is in the form of a joint CDF in terms of error differences. To estimate model parameters 
then, an assumption must be made about the joint distribution of these error differences.  

Under the rank-ordered probit specification, error terms, the e’s, are assumed to be jointly 
distributed normal with a mean of 0 and a variance-covariance matrix Σ. The matrix Σ is 
assumed to have non-identical diagonal terms (heteroskedasticity among alternatives) and non-
zero, symmetric, off-diagonal terms (non-independence of preferences across alternatives). Error 
differences are therefore jointly distributed normal with a mean of 0 and a variance-covariance 
matrix that can be expressed as a quadratic function of Σ (see Train, 2003, pp. 162–163 for 
details).  

Given these assumptions, Equation E.6 can be expressed as a multivariate normal CDF for each 
individual. These individual CDFs fit directly into the log-likelihood function (Equation E.4), 
which is maximized to estimate the parameters. In practice, the rank-ordered probit model can be 
estimated with the “asroprobit” command in Stata 10.5 

Because Equation E.6 is based only on differences in parametric utilities rather than absolute 
measurements of the utilities, the model is invariant to “location.” That is, we could add or 
subtract the identical, fixed quantities from the utilities for each program and the same relative 
rankings would result. This means that we cannot estimate absolute utility levels for every 
program in the choice set. Rather, we can only estimate how the utilities vary compared to one 
particular program. Estimation therefore requires the selection of a base alternative to compare 
the other programs to. Selecting such a base alternative essentially reduces the model from a 
four-way to a three-way structure, with the variance-covariance being reduced from a 4 × 4 to a 
3 × 3 matrix. Because this 3 × 3 matrix is symmetric, it has six unique elements. In this study, 
the base alternative is selected as the status quo.  

In addition to this “location” restriction, there is another restriction that must be made before the 
model is estimable; this one is based on the fact that we cannot independently estimate all of the 
standard deviations of the error terms. One must be fixed and all else is scaled to this fixed term. 
This is the same problem that we have with standard logit and probit models and is commonly 
discussed as the problem of identifying “scale.” Standard practice is to assign the value 1 to the 

                                                 
5. The algorithm that Stata 10 uses to approximate the multivariate normal function is called the 
GHK algorithm (Hajivassiliou and Ruud, 1994). Stata 10 uses a default setting of 200, which draws on the 
Hammersley sequence to approximate the distribution. The GHK algorithm does not estimate the variance-
covariance matrix directly. Rather, to ensure that the matrix remains positive definite and that diagonal 
elements remain positive over the course of the maximization routine, a square-root transformation is taken on 
the Cholesky factorization of the variance-covariance matrix. A log transformation is taken on the diagonal 
elements of this matrix.  
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unidentified parameter. In this study, the standard deviation of the No-Fishing Zones Program is 
assigned this value.  

This leaves five elements of the variance-covariance matrix that are identified: two variances and 
three covariances, or correlations. The scale alternative in this study is specified to be Alternative 
Two, and the standard deviation of Alternative Two is set to unity.  

Once parameter estimates are available, individual i’s WTP for program j can be estimated as 
(omitting the interaction term): 
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Once individual WTP amounts are estimated, mean WTP can be calculated by taking the mean 
of the individual estimates, weighted by the sample probability weights: 
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where wi is the sample probability weight for individual i. 

Applying Equation E.7, Equation E.8 can be re-expressed as:  
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where wX  is the vector of the weighted means of the individual vectors, xi.6 

The estimated variance of mean WTP for program j can be calculated by applying the delta 
method (see Alberini et al., 2007): 

( )[ ] ( ) jjj dvardWTPmeanvar b¢=  (E.10) 

                                                 
6. The normal distribution is a symmetric distribution that covers the domain from negative to positive infinity. 
Error differences also span this range, and these affect the estimation of utility differences and therefore model 
parameters. Underlying the estimation of mean WTP then is the possibility that some individual, predicted 
WTP amounts could be negative, which is counter-intuitive. As Equation E.9 shows, however, mean WTP can 
be estimated based on the “average” individual; it is a measure of central tendency. So, while the normal 
assumption might provide counter-intuitive results for some individuals, it can be used to estimate the overall 
mean – the central tendency of the distribution – when the bulk of the distribution is in positive territory. 
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where var(β) is the estimated variance-covariance matrix of the estimated parameter vector 
(βF, βS, and βy) and dj is the j-specific value of the derivative of Equation E.9 with respect to the 
parameter vector. All elements of Equation E.10 are estimated using the maximum likelihood 
estimates of the parameters and, from Equation E.9, the weighted means of the covariates.  

Ninety-five percent confidence intervals are estimated as: 

( ) ( )[ ]jjj WTPmeanSEWTPmeanCI ´±= 96.1
 (E.11) 

where SE[mean(WTPj)] is the square root of the variance of mean(WTPj). 

The income elasticity of WTPj, or the percentage change in WTPj due to a percentage change in 
income, can be estimated as the ratio of the estimated program-specific coefficient on income 
over the coefficient on program cost, scaled by the ratio of mean income over mean estimated 
WTPj. Specifically, the income elasticity of WTPj is estimated as: 
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The delta method can be used to estimate standard errors and confidence intervals. 

For discrete variables, such as “being a strong environmentalist,” the marginal impact of the 
kth program-specific variable WTPj can be estimated by taking the negative of the ratio of the 
kth program-specific coefficient over the coefficient on program cost: 
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Again, the delta method is used to estimate standard errors and confidence intervals. 
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