These data and maps are adapted from these publications:

About
Coral reefs in the Commonwealth of the Northern Mariana Islands (CNMI) are among the most biodiverse of the U.S. coral reef jurisdictions, including over 1000 species of reef fish, 400 coral, 650 algae, 1700 mollusc and over 800 crustacean species. The reefs have been exposed to thermal stress severe enough to cause coral bleaching in the past (Saipan Lagoon in 2013 on left), and are expected to in the future. Vulnerability to climate change is a function of both exposure of reef systems to climate pressures and the resilience of the system to those pressures. We can support reef resilience and reduce climate vulnerability by reducing the stress to reefs caused by human activities.

Past (1985-2012)
Reefs were exposed to thermal stress that likely caused mild/moderate bleaching (4 Degree Heating Weeks, DHW) 22 times in the 27 year period, and were exposed 10 times to stress that may have caused severe bleaching (8 DHWs). Half (49.3%) of the coral reefs in CNMI were exposed to moderate thermal stress five times or more during the study period. >5% of reefs (n=4 4-km pixels) were exposed to severe thermal stress in 1999, 2001, 2003, 2007, and 2008. Reefs in Guam have been exposed to moderate or severe thermal stress all 10 of the most recent 10 years of the study period (2002-2012), a doubling in the frequency of exposure compared to the first 10 years (1986-1996). This increase can be attributed to increases in sea temperature, which have averaged 0.35 °C/decade in CNMI.

Projected Future (2017-2100)
Climate models¹ project that all coral reefs in CNMI will be exposed to severe thermal stress (8DHWs) every year by 2040 under emissions scenario RCP8.5 (assumes climate policy will not be effective). Such frequent thermal stress may cause recurrent bleaching, suggesting cover of bleaching-sensitive corals will decline further in the decades ahead. RCP4.5 is a stabilization scenario that requires greater emissions reductions than pledged under current climate policy. There is 5 years difference on average between RCP4.5 and 8.5 in the onset of annual severe thermal stress (<10 years for all reefs in CNMI). The projected change in aragonite saturation state (Ωarag) between 2006 and 2050 is -0.6, which may cause a 9% decline in calcification (based on 15% declines for each unit decline of Ωarag, Chan and Connolly 2006). Sea level rise is projected to increase 0.8 meters in CNMI this century.

¹ Intergovernmental Panel on Climate Change (IPCC) fifth phase of the Coupled Model Interpolation Project (CMIP5) models (see van Hooidonk et al. 2015 for list of models for each scenario); projections shown are ensemble averages.