FOCUS
Spatial heterogeneity in deep-water coral communities

GRADE LEVEL
5-6 (Life Science)

FOCUS QUESTION
What types of habitats are likely to be found on the Davidson Seamount?

LEARNING OBJECTIVES
Students will be able to explain what a habitat is, and describe at least three functions or benefits that habitats provide.

Students will be able to describe some habitats that are typical of deep-water hard bottom communities.

Students will be able to explain how organisms such as deep-water corals and sponges add to the variety of habitats in areas such as the Davidson Seamount.

MATERIALS
- One half or whole sheet cake
- Icing in various colors
- Candies or other edible materials for modeling habitat features

AUDIO/VISUAL MATERIALS
- Chalk board, marker board, or overhead projector with transparencies for brainstorming sessions

TEACHING TIME
One or two 45-minute class periods, plus time for group research

SEATING ARRANGEMENT
Groups of 4-6 students

MAXIMUM NUMBER OF STUDENTS
30

KEY WORDS
Davidson Seamount
Habitat
Deep-water coral
Sponge
Microhabitat

BACKGROUND INFORMATION
Seamounts are underwater mountains formed by volcanic processes, either as isolated peaks or as chains that may be thousands of miles long with heights of 3,000 m (10,000 ft) or more. Compared to the surrounding ocean waters, seamounts have high biological productivity, and provide habitats for many species of plant, animal, and microbial organisms. Recently, increasing attention is being directed toward deep-water coral species found on seamounts. In contrast to shallow-water coral reefs, deep-sea coral communities are virtually unknown to the general public and have received much less scientific study. Yet, deep-water coral ecosystems may have a diversity of species comparable to that of corals reefs in shallow waters. Because many seamount species are endemic (that is, they are found nowhere...
else), these ecosystems may be a unique feature of seamounts, and are likely to be important for several reasons. First, because of their high biological productivity, these communities are directly associated with important commercial fisheries. Moreover, deep-sea corals have been identified as promising sources for new drugs to treat cancer and other diseases, as well as natural pesticides and nutritional substances. Recent discoveries suggesting that some corals may be hundreds of years old means that these organisms can provide important records of past climactic conditions in the deep ocean. Apart from these potential benefits, deep-sea corals are part of our world heritage—the environment we hand down from one generation to the next.

Despite their importance, there is growing concern about the impact of human activities on these ecosystems. Commercial fisheries, particularly fisheries that use trawling gear, cause severe damage to seamount habitats. Scientists at the First International Symposium on Deep Sea Corals (August, 2000), warned that more than half of the world’s deep-sea coral reefs have been destroyed. Ironically, some scientists believe that destruction of deep-sea corals by bottom trawlers is responsible for the decline of major fisheries such as cod.

In addition to impacts from fisheries, deep-sea coral communities can also be damaged by oil and mineral exploration, ocean dumping, and unregulated collecting. Other impacts may result from efforts to mitigate increasing levels of atmospheric carbon dioxide. One proposed mitigation is to sequester large quantities of the gas in the deep ocean, either by injecting liquid carbon dioxide into deep ocean areas where it would form a stable layer on the sea floor or by dropping torpedo-shaped blocks of solid carbon dioxide through the water column to eventually penetrate deep into benthic sediments. While the actual impacts are not known, some scientists speculate that since coral skeletons are made of calcium carbonate, their growth would probably decrease if more carbon dioxide were dissolved in the ocean.

The Davidson Seamount, located about 75 miles southwest of Monterey, CA, was the first geological feature to be described as a “seamount” in 1933. The now-extinct volcanoes that formed this and other nearby seamounts were different from typical ocean volcanoes. While the typical undersea volcano is steep-sided, with a flat top and a crater, seamounts in the Davidson vicinity are formed of parallel ridges topped by a series of knobs. These observations suggest that the ridges were formed by many small eruptions that occurred 3 to 5 million years apart. Typical undersea volcanoes are formed by more violent eruptions that gush out lava more frequently over several hundred thousand years.

Although it was the first recognized seamount and is relatively near the U.S. coast, the Davidson Seamount is still 99.98% unexplored. In 2002, a NOAA-funded expedition to the Seamount found a wide variety of organisms, including extensive deep-water coral communities. Among many intriguing discoveries were observations of animals that had never been seen live before, as well as indications that some coral species may be several hundred years old (visit http://oceanexplorer.noaa.gov/explorations/02davidson/davidson.html and http://montereybay.noaa.gov/reports/2002/eco/ocean.html for more information about the 2002 Expedition).

The 2006 Exploring Ancient Coral Gardens Expedition is focused on learning more about deep-sea corals at Davidson Seamount, with four general goals:

- to understand why deep-sea corals live where they do on the seamount;
- to determine the age and growth patterns of the bamboo coral;
- to improve the species list and taxonomy of corals from the seamount; and
- to share the exciting experience with the public through television and the Internet.
One of the most conspicuous features of deep-water coral habitats on the Davidson Seamount is spatial variety, with coral branches, sponges, and other animals creating countless “microhabitats” in many sizes. In this activity, students will create an edible model to simulate this spatial variety, and will develop inferences about the relationships between sessile (non-motile) organisms and other inhabitants of deep reef habitats.

Learning Procedure

[NOTE: Portions of this activity were adapted from “Edible Devonian Marine Ecosystem” by Naturalists at Falls of the Ohio State Park, Clarksville, Indiana, on the Geologic and Paleontologic Cook Book Web site. Visit http://www.uky.edu/KGS/education/cookbook.html for more edible education ideas!]

2. Review the concept of habitats. Have students brainstorm what functions or benefits an organism receives from its habitat. The students’ list should include food, shelter (protection), and appropriate nursery areas. Lead an introductory discussion of the Davidson Seamount and the 2002 and 2006 Ocean Exploration expeditions to the area. You may want to show students some images from the 2002 Expedition Web site (http://oceanexplorer.noaa.gov/explorations/02davidson/davidson.html). Tell students that detailed exploration of the Davidson Seamount is just beginning, but we can have a general idea of what to expect based on explorations in other deep-water, hard-bottom habitats. Explain the concept of “microhabitat.” Be sure students understand how the combination of various rock formations and organisms with complex physical forms (like branching corals and sponges) can offer many different types of habitat and as a result can provide food, shelter, and nursery space for many different kinds of organisms.

4. Have each group present their research findings. Discuss and list the types of habitats that may be found on the Davidson Seamount, and the kinds of organisms researchers are likely to see from a research submersible vehicle. Have students describe what functions or benefits organisms receive from each habitat type.

5. Tell students that the class is going to construct an edible model of the kinds of habitats they hypothesize will be found on the Davidson Seamount. The base of the model will be a sheet cake (half or whole, depending upon how many students you have, how much space is needed to model the hypothetical habitats, and how hungry the students are). Have students brainstorm what kinds of edible features can be added to the cake to make the habitat model. Mounds of icing can be used for boulders, and when hardened can be sculpted to form caves and overhangs. Sponges might be modeled with small pieces of sponge cake (of course),
and strings of rock candy (made by hanging pieces of string in a saturated sugar solution) could represent branching corals. Of course, there are many more possibilities, and your students will probably have a pretty good idea of potential model elements. Once the model is completed, you may want to have your students use it to explain about deep-water hard-bottom habitats to another group of students, perhaps a younger class. Their presentation can conclude with students assuming the role of top consumers, and having direct interaction with the model system (they can eat the cake).

THE BRIDGE CONNECTION
www.vims.edu/bridge/ – Click on “Ocean Science” in the navigation menu to the left, then “Biology,” then “Invertebrates,” then “Other Inverts,” for resources on corals and sponges. Click on “Ecology” then “Deep Sea” for resources on deep sea communities.

THE “ME” CONNECTION
Have students write a short essay describing their personal habitat, what benefits or functions it provides, and what other organisms are involved in creating this habitat.

CONNECTIONS TO OTHER SUBJECTS
English/Language Arts, Earth Science

ASSESSMENT
You may want to have students prepare written reports (either individually or in groups) prior to the group discussion in Step 4.

EXTENSIONS
Log on to http://oceanexplorer.noaa.gov to keep up to date with the latest Davidson Seamount Expedition discoveries, and to find out what researchers are learning about deep-water hard-bottom communities.

Log on to http://www.uky.edu/KGS/education/cookbook.html for more edible education ideas.

RESOURCES

NOAA Learning Objects
http://www.learningdemo.com/noaa/ – Click on the link to “Lesson 3 – Deep-Sea Corals” for an interactive multimedia presentation on deep-sea corals, as well as Learning Activities and additional information on global impacts and deep-sea coral communities.

Other Relevant Lesson Plans from the Ocean Exploration Program

Friend, Foe, or . . . http://oceanexplorer.noaa.gov/explorations/05stepstones/background/education/ss_2005_friendfoe.pdf; 5 pages, 331k) (from the North Atlantic Stepping Stones 2005 Expedition)

Focus - Symbiotic relationships with corals (Life Science)

Students will be able to define and describe symbiotic, mutualistic, commensal, parasitic, facultative and obligatory relationships between organisms; describe at least three species that have symbiotic relationships with corals; and discuss whether these relationships are mutualistic, commensal, or parasitic.

Deep Gardens http://oceanexplorer.noaa.gov/explorations/05deepcorals/background/edu/media/05deepcorals_gardens.pdf; 8 pages, 359k) (from the Florida Coast Deep Corals 2005 Expedition)

Focus: Comparison of deep-sea and shallow-water tropical coral communities (Life Science)

Students will compare and contrast deep-sea coral communities with their shallow-water counterparts, describe three types of coral associated with deep-sea coral communities, and explain three benefits associated with deep-sea coral communities. Students will explain why many scientists are concerned about the future of deep-sea coral communities.
Focus: Spatial heterogeneity in deep-water coral communities

Architects of the Deep Reef

Focus: Reproduction in Cnidaria (Life Science)

Students will be able to identify and describe at least five characteristics of Cnidaria coral, compare and contrast the four classes of Cnidaria, and describe typical reproductive strategies used by Cnidaria. Students will also be able to infer which of these strategies are likely to be used by the deep-sea coral *Lophelia pertusa*, and will be able to describe the advantages of these strategies.

Volcanoes, Plates, and Chains

Focus: Formation of seamounts the Axial-Cobb-Eikelberg-Patton chain, Gulf of Alaska

In this activity, students will be able to describe the processes that form seamounts, describe the movement of tectonic plates in the Gulf of Alaska region and explain the types of volcanic activity that might be associated with these movements, and describe how a combination of hotspot activity and tectonic plate movement could produce the arrangement of seamounts observed in the Axial-Cobb-Eikelberg-Patton chain.

Leaving Home

Focus: Larval recruitment on New England seamounts (Life Science)

Students will be able to explain the meaning of “larval dispersal” and “larval retention” and explain their importance to populations of organisms in the marine environment. Given data on recruitment of organisms to artificial substrates, students will also be able to draw inferences about larval dispersal in these species.

Other Links and Resources

- http://oceanexplorer.noaa.gov/explorations/02davidson/davidson.html – Daily logs, photos, video clips, and backgrounds essays on the 2002 Davidson Seamount Expedition
- http://www.mbari.org/ghgases/ – Web page from the Monterey Bay Aquarium Research Institute describing MBARI’s work on the Ocean Chemistry of Greenhouse Gases, including work on the potential effects of ocean sequestration of carbon dioxide
- http://www.uky.edu/KGS/education/cookbook.html – The Geologic and Paleontologic Cookbook
- http://seamounts.edsc.edu/main.html — Seamounts Web site sponsored by the National Science Foundation

http://www.oceana.org/ — The Oceanic Research Group Web site; lots of photos, but note that they are very explicit about their copyrights; check out “Cnidarians: Simple but Deadly Animals!” by Jonathan Bird, which provides an easy introduction designed for classroom use

http://oceanexplorer.noaa.gov/gallery/livingocean/livingocean_coral.html — Ocean Explorer photograph gallery

http://oceanica.cofc.edu/activities.htm — Project Oceanica Web site, with a variety of resources on ocean exploration topics

NATIONAL SCIENCE EDUCATION STANDARDS

Content Standard A: Science As Inquiry
- Abilities necessary to do scientific inquiry
- Understanding about scientific inquiry

Content Standard C: Life Science
- Populations and ecosystems

Content Standard D: Earth and Space Science
- Structure of the Earth system

Content Standard E: Science and Technology
- Abilities of technological design
- Understandings about science and technology

Content Standard F: Science in Personal and Social Perspectives
- Populations, resources, and environments

OCEAN LITERACY ESSENTIAL PRINCIPLES AND FUNDAMENTAL CONCEPTS

Essential Principle 1.
The Earth has one big ocean with many features.
- Fundamental Concept b. An ocean basin’s size, shape and features (such as islands, trenches, mid-ocean ridges, rift valleys) vary due to the movement of Earth’s lithospheric plates.
- Fundamental Concept h. Although the ocean is large, it is finite and resources are limited.

Essential Principle 5.
The ocean supports a great diversity of life and ecosystems.
- Fundamental Concept c. Some major groups are found exclusively in the ocean. The diversity of major groups of organisms is much greater in the ocean than on land.
- Fundamental Concept d. Ocean biology provides many unique examples of life cycles, adaptations and important relationships among organisms (such as symbiosis, predator-prey dynamics and energy transfer) that do not occur on land.
- Fundamental Concept e. The ocean is three-dimensional, offering vast living space and diverse habitats from the surface through the water column to the seafloor. Most of the living space on Earth is in the ocean.
- Fundamental Concept f. Ocean habitats are defined by environmental factors. Due to interactions of abiotic factors such as salinity, temperature, oxygen, pH, light, nutrients, pressure, substrate and circulation, ocean life is not evenly distributed temporally or spa-
tially, i.e., it is “patchy.” Some regions of the ocean support more diverse and abundant life than anywhere on Earth, while much of the ocean is considered a desert.

Essential Principle 6.
The ocean and humans are inextricably interconnected.

- **Fundamental Concept b.** From the ocean we get foods, medicines, and mineral and energy resources. In addition, it provides jobs, supports our nation’s economy, serves as a highway for transportation of goods and people, and plays a role in national security.
- **Fundamental Concept c.** The ocean is a source of inspiration, recreation, rejuvenation and discovery. It is also an important element in the heritage of many cultures.
- **Fundamental Concept e.** Humans affect the ocean in a variety of ways. Laws, regulations and resource management affect what is taken out and put into the ocean. Human development and activity leads to pollution (such as point source, non-point source, and noise pollution) and physical modifications (such as changes to beaches, shores and rivers). In addition, humans have removed most of the large vertebrates from the ocean.
- **Fundamental Concept g.** Everyone is responsible for caring for the ocean. The ocean sustains life on Earth and humans must live in ways that sustain the ocean. Individual and collective actions are needed to effectively manage ocean resources for all.

Essential Principle 7.
The ocean is largely unexplored.

- **Fundamental Concept a.** The ocean is the last and largest unexplored place on Earth—less than 5% of it has been explored. This is the great frontier for the next generation’s explorers and researchers, where they will find great opportunities for inquiry and investigation.
- **Fundamental Concept b.** Understanding the ocean is more than a matter of curiosity.

Exploration, inquiry and study are required to better understand ocean systems and processes.

- **Fundamental Concept c.** Over the last 40 years, use of ocean resources has increased significantly, therefore the future sustainability of ocean resources depends on our understanding of those resources and their potential and limitations.
- **Fundamental Concept d.** New technologies, sensors and tools are expanding our ability to explore the ocean. Ocean scientists are relying more and more on satellites, drifters, buoys, subsea observatories and unmanned submersibles.
- **Fundamental Concept f.** Ocean exploration is truly interdisciplinary. It requires close collaboration among biologists, chemists, climatologists, computer programmers, engineers, geologists, meteorologists, and physicists, and new ways of thinking.

For More Information
Paula Keener-Chavis, Director, Education Programs
NOAA Office of Ocean Exploration
Hollings Marine Laboratory
331 Fort Johnson Road, Charleston SC 29412
843.762.8818
843.762.8737 (fax)
paula.keener-chavis@noaa.gov

Acknowledgements
This lesson plan was produced by Mel Goodwin, PhD, The Harmony Project, Charleston, SC for the National Oceanic and Atmospheric Administration. If reproducing this lesson, please cite NOAA as the source, and provide the following URL: http://oceanexplorer.noaa.gov