FeedbackAboutHelpLogin
Department of Commerce National Oceanic and Atmospheric Administration Department of Commerce
National Oceanic and Atmospheric Administration
CoRIS Site Home Search BrowseSearch Tips
CoRIS Banner

.

Environmental conditions and herbivore biomass determine coral reef benthic community composition: implications for quantitative baselines


Description:

Author(s):
Robinson, J. P. W., Williams, I. D., Yeager, L. A., McPherson, J. M., Clark, J., Oliver, T. A, Baum, J. K
Title:
Environmental conditions and herbivore biomass determine coral reef benthic community composition: implications for quantitative baselines
Publication Date:
2018
Journal Title:
Coral Reefs
Volume:
37
Issue:
4
Page(s):
1157-1168
Abstract:
"Our ability to understand natural constraints on coral reef benthic communities requires quantitative assessment of the relative strengths of abiotic and biotic processes across large spatial scales. Here, we combine underwater images, visual censuses and remote sensing data for 1566 sites across 34 islands spanning the central-western Pacific Ocean, to empirically assess the relative roles of abiotic and grazing processes in determining the prevalence of calcifying organisms and fleshy algae on coral reefs. We used regression trees to identify the major predictors of benthic composition and to test whether anthropogenic stress at inhabited islands decouples natural relationships. We show that sea surface temperature, wave energy, oceanic productivity and aragonite saturation strongly influence benthic community composition; overlooking these factors may bias expectations of calcified reef states. Maintenance of grazing biomass above a relatively low threshold (~10-20 kg ha -1) may also prevent transitions to algal-dominated states, providing a tangible management target for rebuilding overexploited herbivore populations. Biophysical relationships did not decouple at inhabited islands, indicating that abiotic influences remain important macroscale processes, even at chronically disturbed reefs. However, spatial autocorrelation among inhabited reefs was substantial and exceeded abiotic and grazing influences, suggesting that natural constraints on reef benthos were superseded by unmeasured anthropogenic impacts. Evidence of strong abiotic influences on reef benthic communities underscores their importance in specifying quantitative targets for coral reef management and restoration that are realistic within the context of local conditions."
Keywords:
Macroecology, Biophysical, Grazing, Spatial scale, Top-down control, Decoupling, Abiotic forcing, Boosted regression trees
Electronic DOI:
Notes:
FY2019 CRCP Project ID 743; Project Title: National Coral Reef Monitoring Program (NCRMP) Implementation (Biological Monitoring); Principal Investigator: Erica Towle

Back to Top
/search/rest/document?f=html&id=%7B01695C2E-2A8A-475C-A087-398B582AD317%7D
This Geoportal was built using the Geoportal Server. Please read the Disclaimer and Privacy or Contact Us.