FeedbackAboutHelpLogin
Department of Commerce National Oceanic and Atmospheric Administration Department of Commerce
National Oceanic and Atmospheric Administration
CoRIS Site Home Search BrowseSearch Tips
CoRIS Banner

.

Oceanic productivity and high-frequency temperature variability—not human habitation—supports calcifier abundance on central Pacific coral reefs


Description:

Title:
Oceanic productivity and high-frequency temperature variability—not human habitation—supports calcifier abundance on central Pacific coral reefs
Author(s):
Huntington, Brittany
Vargas-Ángel, Bernardo
Couch, Courtney S.
Barkley, Hannah C.
Abecassis, Melanie
Dates of Publication:
2022
Abstract:
Past research has demonstrated how local-scale human impacts—including reduced water quality, overfishing, and eutrophication—adversely affect coral reefs. More recently, global-scale shifts in ocean conditions arising from climate change have been shown to impact coral reefs. Here, we surveyed benthic reef communities at 34 U.S.-affiliated Pacific islands spanning a gradient of oceanic productivity, temperature, and human habitation. We re-evaluated patterns reported for these islands from the early 2000s in which uninhabited reefs were dominated by calcifiers (coral and crustose coralline algae) and thought to be more resilient to global change. Using contemporary data collected nearly two decades later, our analyses indicate this projection was not realized. Calcifiers are no longer the dominant benthic group at uninhabited islands. Calcifier coverage now averages 26.9% ± 3.9 SE on uninhabited islands (compared to 45.18% in the early 2000s). We then asked whether oceanic productivity, past sea surface temperatures (SST), or acute heat stress supersede the impacts of human habitation on benthic cover. Indeed, we found variation in benthic cover was best explained not by human population densities, but by remotely sensed metrics of chlorophyll-a, SST, and island-scale estimates of herbivorous fish biomass. Specifically, higher coral and CCA cover was observed in more productive waters with greater biomass of herbivores, while turf cover increased with daily SST variability and reduced herbivore biomass. Interestingly, coral cover was positively correlated with daily variation in SST but negatively correlated with monthly variation. Surprisingly, metrics of acute heat stress were not correlated with benthic cover. Our results reveal that human habitation is no longer a primary correlate of calcifier cover on central Pacific island reefs, and highlight the addition of oceanic productivity and high-frequency SST variability to the list of factors supporting reef builder abundance.
Keywords:
Aquatic Science
Global and Planetary Change
Ocean Engineering
Oceanography
Water Science and Technology
Local Corporate Name:
CIMAR (Cooperative Institute for Marine and Atmospheric Research)
CoRIS (Coral Reef Information System)
Format:
PDF
Type of Resource:
Journal Article
Note:
Past research has demonstrated how local-scale human impacts—including reduced water quality, overfishing, and eutrophication—adversely affect coral reefs. More recently, global-scale shifts in ocean conditions arising from climate change have been shown to impact coral reefs. Here, we surveyed benthic reef communities at 34 U.S.-affiliated Pacific islands spanning a gradient of oceanic productivity, temperature, and human habitation. We re-evaluated patterns reported for these islands from the early 2000s in which uninhabited reefs were dominated by calcifiers (coral and crustose coralline algae) and thought to be more resilient to global change. Using contemporary data collected nearly two decades later, our analyses indicate this projection was not realized. Calcifiers are no longer the dominant benthic group at uninhabited islands. Calcifier coverage now averages 26.9% ± 3.9 SE on uninhabited islands (compared to 45.18% in the early 2000s). We then asked whether oceanic productivity, past sea surface temperatures (SST), or acute heat stress supersede the impacts of human habitation on benthic cover. Indeed, we found variation in benthic cover was best explained not by human population densities, but by remotely sensed metrics of chlorophyll-a, SST, and island-scale estimates of herbivorous fish biomass. Specifically, higher coral and CCA cover was observed in more productive waters with greater biomass of herbivores, while turf cover increased with daily SST variability and reduced herbivore biomass. Interestingly, coral cover was positively correlated with daily variation in SST but negatively correlated with monthly variation. Surprisingly, metrics of acute heat stress were not correlated with benthic cover. Our results reveal that human habitation is no longer a primary correlate of calcifier cover on central Pacific island reefs, and highlight the addition of oceanic productivity and high-frequency SST variability to the list of factors supporting reef builder abundance.
URL:
DOI:
Back to Top
/search/rest/document?f=html&id=%7BCB4AF2D3-E9B4-4BE2-BE71-0CF241A25831%7D
This Geoportal was built using the Geoportal Server. Please read the Disclaimer and Privacy or Contact Us.